Efficient Multiple Importance Sampling Estimators
نویسندگان
چکیده
منابع مشابه
Adaptive Multiple Importance Sampling
The Adaptive Multiple Importance Sampling (AMIS) algorithm is aimed at an optimal recycling of past simulations in an iterated importance sampling scheme. The difference with earlier adaptive importance sampling implementations like Population Monte Carlo is that the importance weights of all simulated values, past as well as present, are recomputed at each iteration, following the technique of...
متن کاملEfficient High-Dimensional Importance Sampling
The paper describes a simple, generic and yet highly accurate Efficient Importance Sampling (EIS) Monte Carlo (MC) procedure for the evaluation of high-dimensional numerical integrals. EIS is based upon a sequence of auxiliary weighted regressions which actually are linear under appropriate conditions. It can be used to evaluate likelihood functions and byproducts thereof, such as ML estimators...
متن کاملEstimating standard errors for importance sampling estimators with multiple Markov chains
The naive importance sampling estimator based on the samples from a single importance density can be extremely numerically unstable. We consider multiple distributions importance sampling estimators where samples from more than one probability distributions are combined to consistently estimate means with respect to given target distributions. These generalized importance sampling estimators pr...
متن کاملPermuted Product and Importance-Sampling Estimators for Regenerative Simulations
In a previous paper we introduced a new variance-reduction technique for regenerative simulations based on permuting regeneration cycles. In this paper we apply this idea to new classes of estimators. In particular, we derive permuted versions of likelihood-ratio derivative estimators for steady-state performance measures, importance-sampling estimators of the mean cumulative reward until hitti...
متن کاملZero-Variance Importance Sampling Estimators for Markov Process Expectations
We study the structure of zero-variance importance sampling estimators for expectations of functionals of Markov processes. For a class of expectations that can be characterized as solutions to linear systems, we show that a zerovariance estimator can be constructed by using an importance distribution that preserves the Markovian nature of the underlying process. This suggests that good practic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Signal Processing Letters
سال: 2015
ISSN: 1070-9908,1558-2361
DOI: 10.1109/lsp.2015.2432078